16 research outputs found

    Dynamics of Shape Memory Alloys Patches with Mechanically Induced Transformations

    Get PDF
    A mathematical model is constructed for the modelling of two di- mensional thermo-mechanical behavior of shape memory alloy patches. The model is constructed on the basis of a modified Landau-Ginzburg theory and includes the coupling effect between thermal and mechanical fields. The free energy functional for the model is exemplified for the square to rectangular transformations. The model, based on nonlinear coupled partial differential equations, is reduced to a system of differential-algebraic equations and the backward differentiation methodology is used for its numerical analysis. Computational experiments with representative distributed mechanical loadings are carried out for patches of different sizes to analyze thermo-mechanical waves, coupling effects, and 2D phase transformations

    First Principles Molecular Dynamics Study of CdS Nanostructure Temperature-Dependent Phase Stability

    Get PDF
    First principles molecular dynamics simulations are used to determine the relative stability of wurtzite, graphitic, and rocksalt phases of the CdS nanostructure at various temperatures. Our results indicate that in the temperature range from 300 to 450 K, the phase stability sequence for the CdS nanostructure is rocksalt, wurtzite, and graphitic phases. The same situation holds for bulk CdS crystals under high pressure and 0 K. Our work also demonstrates that although the temperature can affect the total energy of the CdS nanostructure, it cannot change its phase stability sequence in the temperature range studied in this letter

    Influence of Electromechanical Effects and Wetting Layers on Band Structures of AIN/GaN Quantum Dots and Spin Control

    Get PDF
    In a series of recent papers we demonstrated that coupled electromechanical effects can lead to pronounced contributions in band structure calculations of low dimensional semiconductor nanostructures LDSNs such as quantum dots QDs , wires, and even wells. Some such effects are essentially nonlinear. Both strain and piezoelectric effects have been used as tuning parameters for the optical response of LDSNs in photonics, band gap engineering, and other applications. However, the influence of spin orbit effects in presence of external magnetic field on single and vertically coupled QD has been largely neglected in the literature. The electron spin splitting terms which are coupled to the magnetic field through the Pauli spin matrix in these QDs become important in the design of optoelectronic devices as well as in tailoring properties of QDs in other applications areas. At the same time, single and vertically stacked QDs are coupled with electromagnetic and mechanical fields which become increasingly important in many applications of LDSN-based systems, in particular, where spin splitting energy is important. These externally applied electric and magnetic fields as well as the separation between the vertically coupled QDs can be used as tuning parameters. Indeed, as electromagnetic and elastic effects are often significant in LDSNs, it is reasonable to expect that the externally applied magnetic fields oriented along a direction perpendicular to the plane of two-dimensional electron gas in the QDs may also be used as a tuning parameter in the application of light emitting diodes, logic devices, for example, OR gates, AND gates and others. In this paper, by using the fully coupled model of electroelasticity, we analyze the influence of these effects on optoelectronic properties of QDs. Results are reported for III–V type semiconductors with a major focus given to AlN/GaN based QD systems

    Accounting for the Effect of Internal Viscosity in Dumbbell Models for Polymeric Fluids and Relaxation of DNA

    Get PDF
    The coarse-graining approach is one of the most important mod- eling methods in research of long-chain polymers such as DNA molecules. The dumbbell model is a simple but e±cient way to describe the behavior of polymers in solutions. In this paper, the dumbbell model with internal viscosity (IV) for concentrated polymeric liquids is analyzed for the steady-state and time-dependent elongational flow and steady-state shear °ow. In the elongational flow case, by analyzing the governing ordinary di®erential equations the contribution of the IV to the stress tensor is discussed for fluids subjected to a sudden elongational jerk. In the shear °ow case, the governing stochastic differential equation of the finitely extensible nonlinear elastic dumbbell model is solved numerically. For this case, the extensions of DNA molecules for different shear rates are analyzed, and the comparison with the experimental data is carried out to estimate the contribution of the e®ect of internal viscosity

    Dynamics of Torque-Speed Profiles for Electric Vehicles and Nonlinear Models Based on Differential-Algebraic Equations

    Get PDF
    The so-called μ — λ curves, where is the slip ratio and μ is the normalised traction force or the friction index, are nonlinear functions of the velocity of the vehicle and the wheel rotational velocity. Despite their predominant use in the literature, linear approximations of such curves may fail to predict correctly key characteristics of vehicle performance efficiency such as torque-speed profiles. Although attempts to model these characteristics in the context of slip phenomena have been made before, to our best knowledge a general model with respect to the vehicle velocity, the wheel rotating velocity, the slip ratio, the traction force, and the torque, has never been formulated and solved as a coupled nonlinear problem based on a system of differential-algebraic equations arising naturally in this context. In this paper, such a model is formulated, solved numerically, and some results of numerical simulation of driving an electric vehicle on di®erent surface conditions are presented

    Parallelization of the Wolff Single-Cluster Algorithm

    Get PDF
    A parallel [open multiprocessing (OpenMP)] implementation of the Wolff single-cluster algorithm has been developed and tested for the three-dimensional (3D) Ising model. The developed procedure is generalizable to other lattice spin models and its effectiveness depends on the specific application at hand. The applicability of the developed methodology is discussed in the context of the applications, where a sophisticated shuffling scheme is used to generate pseudorandom numbers of high quality, and an iterative method is applied to find the critical temperature of the 3D Ising model with a great accuracy. For the lattice with linear size L=1024, we have reached the speedup about 1.79 times on two processors and about 2.67 times on four processors, as compared to the serial code. According to our estimation, the speedup about three times on four processors is reachable for the O(n) models with n ≥ 2. Furthermore, the application of the developed OpenMP code allows us to simulate larger lattices due to greater operative (shared) memory available

    Thermomechanical Behavior of Thermoelectric SMA Actuators

    Get PDF
    In this paper we analyse numerically thermomechanical behaviour of a sandwich-type actuator where a shape memory alloy layer is located between two oppositely doped semiconductors. The mathematical model for this analysis is based on a coupled system of partial differential equations with constitutive equations taken in the Falk form. The system is solved using an efficient differential-algebraic solver and computational results describing thermomechanical fields in such devices are presented

    Geometry Dependent Current-Voltage Characteristics of ZnO Nanostructures: A Combined Nonequilibrium Green’s Function and Density Functional Theory Study

    Get PDF
    Current-voltage I-V characteristics of different ZnO nanostructures were studied using a combined nonequilibrium Green’s function and density functional theory techniques with the two-probe model. It was found that I-V characteristics of ZnO nanostructures depend strongly on their geometry. For wurtzite ZnO nanowires, currents decrease with increasing lengths under the same applied voltage conditions. The I-V characteristics are similar for single-walled ZnO nanotubes and triangular cross section ZnO nanowires but they are different from I-V characteristics of hexagonal cross section ZnO nanowires. Finally, our results are discussed in the context of calculated transmission spectra and densities of states

    Dynamic Coupling of Piezoelectric Effects, Spontaneous Polarization, and Strain in Lattice-Mismatched Semiconductor Quantum-Well Heterostructures

    Get PDF
    A static and dynamic analysis of the combined and self-consistent influence of spontaneous polarization, piezoelectric effects, lattice mismatch, and strain effects is presented for a three-layer one-dimensional AlN/GaN wurtzite quantum-well structure with GaN as the central quantum-well layer . It is shown that, contrary to the assumption of Fonoberov and Balandin [J. Appl. Phys. 94, 7178 (2003); J. Vac. Sci. Technol. B 22, 2190 (2004)], even in cases with no current transport through the structure, the strain distributions are not well captured by minimization of the strain energy only and not, as is in principle required, the total free energy including electric and piezoelectric coupling and spontaneous polarization contributions. Furthermore, we have found that, when an ac signal is imposed through the structure, resonance frequencies exist where strain distributions are even more strongly affected by piezoelectric-coupling contributions depending on the amount of mechanical and electrical losses in the full material system
    corecore